Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. - 1 Synergetic formation of secondary inorganic and organic - 2 aerosol: Influence of SO₂ and/or NH₃ in the heterogeneous - 3 process - 4 Biwu Chu^{a, b}, Xiao Zhang^{c, d}, Yongchun Liu^{a, b}, Hong He^{a, b,*}, Yele Sun^{b,e}, Jingkun - 5 Jiang^c, Junhua Li^c, Jiming Hao^c - 6 ^a State Key Joint Laboratory of Environment Simulation and Pollution Control, - 7 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, - 8 Beijing 100085, China - 9 b Center for Excellence in Urban Atmospheric Environment, Institute of Urban - 10 Environment, Chinese Academy of Sciences, Xiamen 361021, China - 11 ° State Key Joint Laboratory of Environment Simulation and Pollution Control, School - 12 of Environment, Tsinghua University, Beijing 100084, China - 13 d Nanjing University of Information Science & Technology, Nanjing 210044, China - 14 e State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric - 15 Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing - 16 100029, China 17 - 18 Correspondence to: Hong He (honghe@rcees.ac.cn) - 19 Abstract - 20 The effects of SO₂ and NH₃ on secondary organic aerosol formation have - 21 rarely been investigated together, while the interactive effects between - 22 inorganic and organic species under highly complex pollution conditions - 23 remain uncertain. Here we studied the effects of SO₂ and NH₃ on secondary - 24 aerosol formation in the photooxidation system of toluene/ NO_x in the Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. presence or absence of Al₂O₃ seed aerosols in a 2 m³ smog chamber. The 25 26 presence of SO₂ increased new particle formation and particle growth 27 significantly, regardless of whether NH₃ was present or not. Sulfate, organic aerosol, nitrate and ammonium were all found to increase linearly 28 29 with increasing SO₂ concentrations. The increases in these four species 30 were more obvious under NH₃-rich conditions, and the generation of nitrate, 31 ammonium and organic aerosol increased more significantly than sulfate 32 with respect to SO₂ concentration, while sulfate was the most sensitive 33 species under NH₃-poor conditions. The synergistic effects between SO₂ and NH₃ in the heterogeneous process contributed greatly to secondary 34 35 aerosol formation. Specifically, the generation of NH₄NO₃ was found to be highly dependent on the surface area concentration of suspended particles, 36 and increased most significantly among the four species with respect to 37 38 SO₂ concentration under ammonia-rich conditions. Meanwhile, the 39 absorbed NH₃ might provide a liquid surface layer for the absorption and 40 subsequent reaction of SO₂ and organic products, and therefore, enhance 41 sulfate and secondary organic aerosol (SOA) formation. This effect mainly 42 occurred in the heterogeneous process and resulted in a significantly higher 43 growth rate of seed aerosols compared to that without NH₃. By applying 44 positive matrix factorization (PMF) analysis to the AMS data, two factors 45 were identified for the generated SOA. One factor, assigned to less-46 oxidized organic aerosol and some oligomers, increased with increasing SO₂ under NH₃-poor conditions, mainly due to the well-known acid 47 catalytic effect of the acid products on SOA formation in the heterogeneous 48 Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 49 process. The other factor, assigned to the highly oxidized organic 50 component and some nitrogen-containing organics (NOC), increased with 51 SO₂ under a NH₃-rich environment, with NOC (organonitrates and NOC 52 with reduced N) contributing most of the increase. ## Introduction 53 54 With the recent rapid economic development and urbanization, the 55 associated emissions from coal combustion, motor vehicle exhaust and 56 various industrial emissions have led to highly complex air pollution in China. Besides the high concentrations of fine particles (PM_{2.5}), high 57 58 concentrations of NO_x, SO₂, NH₃, and volatile organic compounds (VOCs) 59 were observed in haze pollution episodes (Liu et al., 2013; Ye et al., 2011; 60 Zou et al., 2015; Wang et al., 2015). For example, the SO₂ concentration in 61 Jinan, a city in North China, can be as high as 43 ppb in the winter season 62 (Wang et al., 2015). The high concentrations of precursors resulted in high 63 concentrations of secondary inorganic and organic species in PM_{2.5} during 64 haze formation (Yang et al., 2011; Zhao et al., 2013; Dan et al., 2004; Duan 65 et al., 2005; Wang et al., 2012). There has been no extensive measurement 66 of NH₃ in China despite its extensive emission and increasing trend (Fu et 67 al., 2015). A few studies reported high concentrations of NH₃ (maximum concentration higher than 100 ppb) in the North China Plain (Meng et al., 68 69 2015; Wen et al., 2015) and many observation data indicated NH₃-rich conditions for secondary aerosol formation, and strong correlations 70 71 between peak levels of fine particles and large increases in NH₃ Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 72 concentrations in China (Ye et al., 2011; Liu et al., 2015a). Under this 73 complex situation, studying the synergistic effects of SO₂ and NH₃ among 74 pollutants in secondary aerosol formation is crucial in order to understand 75 the formation mechanism of heavy haze pollution. 76 Interactions between inorganic pollutants in secondary aerosol formation have been investigated extensively. For example, NO₂ was found 77 78 to increase the oxidation of SO₂ in aqueous aerosol suspensions (Tursic and 79 Grgic, 2001) and on a sandstone surface (Bai et al., 2006). The synergistic 80 reaction between SO₂ and NO₂ on mineral oxides was reported (Liu et al., 81 2012a) and proposed to explain the rapid formation of sulfate during heavy 82 haze days (He et al., 2014). The presence of NH₃ was also found to enhance 83 the conversion of SO₂ to sulfate in aerosol water and on the surface of 84 mineral dust or PM_{2.5} (Tursic et al., 2004; Behera and Sharma, 2011; Yang 85 et al., 2016). 86 Secondary aerosol formation from coexisting inorganic and organic 87 pollutants is far more complicated. There have been a few studies that 88 investigated the effects of SO₂ or NH₃ on secondary organic aerosol (SOA) 89 formation. SO₂ has been found to enhance SOA yield from isoprene (Edney et al., 2005; Kleindienst et al., 2006; Lin et al., 2013), α -pinene 90 91 (Kleindienst et al., 2006; Jaoui et al., 2008), and anthropogenic precursors (Santiago et al., 2012) due to its acidic aerosol products, which were 92 93 thought to either take up organic species (Liggio and Li, 2008, 2006) or result in the formation of high molecular weight compounds in acid-94 95 catalytic reactions (Liggio et al., 2007; Kleindienst et al., 2006; Santiago Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 96 97 in SOA formation (Schmitt-Kopplin et al., 2010). The effects of NH₃ on 98 SOA formation are relatively poorly understood. In previous studies, 99 disparate effects of NH₃ on secondary aerosol formation were reported. It 100 was found that the presence of NH₃ increased SOA formation in the 101 reaction of α -pinene or cyclohexene with ozone (Na et al., 2007), but had 102 little effect on SOA mass in isoprene ozonolysis (Na et al., 2007; Lin et al., 2013) and even decreased SOA production from the reaction of styrene and 103 104 ozone (Na et al., 2006). NH₃ was reported to react with some organic acids and contribute to secondary aerosol formation (Na et al., 2007; Lin et al., 105 106 2013), while nucleophilic NH₃ might attack and decompose trioxolane and 107 hydroxyl-substituted esters (Na et al., 2006), and therefore decrease SOA mass. Updyke et al. (2012) studied brown carbon formation via reactions 108 109 of ammonia with SOA from various precursors and emphasized that aging 110 by NH₃ is not a unique mechanism of SOA browning. It was found that the 111 degree of browning had a positive correlation with the carbonyl products, 112 which may react with NH₃ and generate hemiaminal (Amarnath et al., 113 1991), while the form of ammonia (NH₃ gas or NH₄⁺ ion) had little influence on the browning processes. 114 115 The effects of SO₂ and NH₃ on SOA formation have rarely been investigated together, while the interactive effects between inorganic and 116 117 organic species under highly complex pollution conditions remain uncertain. This study investigated secondary aerosol formation in the 118 119 photooxidation of toluene/NO_x with varied concentrations of SO₂ under et al., 2012). Besides, sulfate esters were also confirmed as major players Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. NH₃-poor and NH₃-rich conditions. Some synergetic effects in the heterogeneous process that contributed to both secondary inorganic and organic aerosol formation were explored. ### Methods 123 124 A series of smog chamber experiments were carried out to simulate 125 secondary aerosol formation in the photooxidation of VOC/NO_x in the 126 presence or absence of SO₂ and/or NH₃. The chamber is a 2 m³ cuboid 127 reactor constructed with 50 µm-thick FEP-Teflon film (Toray Industries, 128 Inc., Japan). The chamber was described in detail in Wu et al. (2007). A 129 temperature-controlled enclosure (SEWT-Z-120, Escpec, Japan) provides 130 a constant temperature (30 \pm 0.5 °C), and 40 black lights (GE F40T12/BLB, 131 peak intensity at 365 nm, General Electric Company, USA) provide 132 irradiation during the experiments. The
hydrocarbon concentration was 133 measured by a gas chromatograph (GC, Beifen SP-3420, Beifen, China) 134 equipped with a DB-5 column (30 m×0.53 mm×1.5 mm, Dikma, USA) and 135 flame ionization detector (FID), while NO_x, SO₂ and O₃ were monitored 136 by an NO_x analyzer (Model 42C, Thermo Environmental Instruments, 137 USA), an SO₂ analyzer (Model 43I, Thermo Environmental Instruments, 138 USA) and an O₃ analyzer (Model 49C, Thermo Environmental Instruments, 139 USA), respectively. A scanning mobility particle sizer (SMPS) (TSI 3936, 140 TSI Incorporated, USA) was used to measure the size distribution of particulate matter (PM) in the chamber, and also employed to estimate the 141 142 volume and mass concentration. The chemical composition of aerosols was Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 143 measured by an aerosol chemical speciation monitor (ACSM, Aerodyne 144 Research Incorporated, USA) or high resolution time of flight aerosol mass 145 spectrometer (HR-ToF-AMS, Aerodyne Research Incorporated, USA). 146 ACSM is a simplified version of aerosol mass spectrometry (AMS), with 147 similar principles and structure. Ng et al. (2011) presented a detailed 148 introduction to this instrument and found that the measurement results 149 agreed well with the AMS. Wall deposition of particles in the chamber was similarly corrected using a regression equation to describe the dependence 150 151 of deposition rate on the particle size (Takekawa et al., 2003). Detailed information on this equation was given in our previous studies (Chu et al., 152 153 2012; Chu et al., 2014). Alumina seed particles were produced on-line via a spray pyrolysis 154 155 setup, which has been described in detail elsewhere (Liu et al., 2010). Liquid alumisol (AlOOH, Lot No. 2205, Kawaken Fine Chemicals Co., 156 157 Ltd., Japan) with an initial concentration of 1.0 wt%, was sprayed to 158 droplets by an atomizer. After that, the droplets were carried through a 159 diffusion dryer and a corundum tube embedded in a tubular furnace with 160 the temperature maintained at 1000 $\,^{\circ}$ C to generate alumina particles. The 161 obtained alumina particles were γ-Al₂O₃ as detected by X-ray diffraction 162 measurements, and spherical-shaped according to electron micrograph 163 results. Before being introduced into the chamber, the particles were 164 carried through a neutralizer (TSI 3087, TSI Incorporated, USA). In addition, toluene was injected into a vaporizer and then carried into the 165 166 chamber by purified air, while NO_x, SO₂ and NH₃ were directly injected Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 168 170 171 © Author(s) 2016. CC-BY 3.0 License. into the chamber from standard gas bottles. The concentrations of NH₃ were estimated according to the introduced amount of NH₃ and the volume of the reactor. # **Results and discussion** ## Particle formation and growth in different inorganic gas conditions 172 The effects of SO₂ and NH₃ on secondary aerosol formation were qualitatively studied first in the photooxidation system of toluene/NO_x 173 174 without the presence of a seed aerosol. Experiments were carried out in the absence of SO₂ and NH₃, in the presence of SO₂ or NH₃, and coexistence 175 176 of SO₂ and NH₃, respectively. Experimental details are listed in Table 1. 177 The letter codes used for the experiments represent a combination of the 178 initial letters of the precursors for each experiment. For example, 179 experiment "ASTN" is an experiment with presence of ammonia gas (A), 180 sulfur dioxide (S), toluene (T) and nitrogen oxides (N). Two experiments 181 (ATN1 and ATN2) were carried out under similar conditions to test the 182 reproducibility of the experiments. Secondary aerosol formation in these photooxidation experiments was 183 184 measured by the SMPS, and the results are displayed in Fig. 1. Assuming the same aerosol density in these experiments, the presence of either NH₃ 185 186 or SO₂ enhanced secondary aerosol formation markedly. Compared to toluene/NO_x photooxidation, the secondary aerosol volume concentration 187 188 rose 1.5 times in the presence of SO₂, and was more than tripled in the Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 189 190 191 192 193 194 195 196 197 198 © Author(s) 2016. CC-BY 3.0 License. presence of the NH₃. The volume of secondary aerosol showed an obvious peak in the toluene/NO_x/NH₃ system at about 2.3 hours of photooxidation. With the wall deposition accounted for, the decrease of the volume concentration after that point was unexpected, but could be reproduced (Experiment ATN1 and ATN2). Such a decrease was not observed with coexisting NH₃ and SO₂, indicating interactions between NH₃ and SO₂ in the photooxidation system. The reason for this phenomenon will be discussed in the following analysis of the chemical composition of the generated particles. Table 1 Initial experimental conditions of toluene/ NO_x photooxidation in the presence or absence of SO₂ and/or NH₃ | Experiment | Hydrocarbon | NO | NO _x -NO | SO ₂ | NH ₃ * | RH | Т | |------------|-------------|-----|---------------------|-----------------|-------------------|----|-----| | No. | ppm | ppb | ppb | ppb | ppb | % | K | | TN | 1.05 | 54 | 49 | 0 | 0 | 50 | 303 | | STN | 1.05 | 55 | 50 | 137 | 0 | 50 | 303 | | ATN1 | 1.06 | 47 | 48 | 0 | 264 | 50 | 303 | | ATN2 | 0.98 | 48 | 54 | 0 | 264 | 50 | 303 | | ASTN | 1.02 | 49 | 53 | 134 | 264 | 50 | 303 | *The concentrations of NH₃ were calculated according to the introduced amount of NH₃ and the volume of the reactor. 202 200 Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-486, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. Fig. 1 Secondary aerosol formation in photooxidation of toluene/NO_x in the presence or absence of NH₃ and/or SO₂. The letters codes for the experiments indicate the introduced pollutants, i.e. "A" for ammonia, "S" for sulfur dioxide, "T" for toluene and "N" for nitrogen dioxide. Experimental details are listed in Table 1. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-486, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. Fig. 2 Size distributions of the suspended particles as a function of time during the reaction in photooxidation of toluene/ NO_x in the presence or absence of NH_3 and/or SO_2 . N_{max} shows the maximal particle number concentration during the reaction for each experiment. Experimental details are listed in Table 1. The size distributions of the secondary aerosol in the photooxidation, with a range of 17-1000 nm, were analyzed and are shown in Fig. 2. A significant increase in new particle formation was observed in the presence of SO_2 . The maximal particle number concentrations in experiments ASTN and STN were one order of magnitude higher than those in experiments ATN and TN. The presence of NH_3 also contributed substantially to the particle growth in photooxidation of toluene/ NO_x . Comparing Fig. 2(c) to Fig. 2(a), the total number concentration of particles in experiment ATN was a little lower than that in experiment TN, but the mode diameter of the Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 © Author(s) 2016. CC-BY 3.0 License. particles was much larger. ## Secondary inorganic aerosol formation Some synergetic effects were observed in secondary inorganic aerosol formation besides the generation of ammonium and sulfate from NH₃ and SO₂. For example, nitrate formation was not only enhanced by NH₃, due to conversion of nitric acid into ammonia nitrate, but also was markedly affected by SO₂. The chemical compositions of the generated aerosols in the photooxidation of toluene/NO_x were analyzed with an ACSM, and their time variations are displayed in Fig. 3. In experiment ATN, the concentrations of ammonium and nitrate decreased after about 2.3 hours of reaction, as shown in Fig. 3, which was consistent with the decreasing trend of particle concentration shown in Fig. 1. The reason for this phenomenon is unknown but we speculate that the generated NH₄NO₃ might partition back into the gas phase as reaction goes on. In Fig. 2, we observed that the particle size was larger in experiment ATN than the other three experiments. The larger diameter resulted in more significant wall deposition, reduced the surface area of the suspended particles, and shifted the partition equilibrium to the gas phase. Adding SO₂ to the system resulted in a lower peak concentration but a higher final concentration of nitrate. In the presence of SO₂, higher concentrations of sulfate and organic species were generated and mixed with nitrate in the aerosol, which may shift the partition balance of NH₄NO₃ to the aerosol phase. In addition, the presence of organic matter might accelerate the deliquescence of generated Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. inorganic particles (Meyer et al., 2009;Li et al., 2014), and provide moist surfaces for heterogeneous hydrolysis of N_2O_5 , contributing to nitrate formation (Pathak et al., 2009). g. 3 Time variations of the chemical species in the secondary aerosol generated from the photooxidation of toluene/ NO_x in the presence or absence of NH_3 and SO_2 . Letter codes for experiments indicate the introduced pollutants, i.e. "A" for ammonia, "S" for sulfur dioxide, "T" for toluene and "N" for nitrogen dioxide. Experimental details are listed in Table 1. In Fig. 3, the generation of ammonium salt can be observed in the photooxidation of toluene/NO_x/SO₂ without introducing NH₃ gas. This indicated there was NH₃
present in the background air in the chamber, and also indicated that the effects of NH₃ on secondary aerosol formation might be underestimated in this study. The background NH₃ was derived from the Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 261 partitioning of the deposited ammonium sulfate and nitrate on the chamber 262 wall when humid air was introduced (Liu et al., 2015b). Unfortunately, due 263 to the lack of appropriate instrumentation, we were not able to measure the exact concentration of NH₃ in the background air in the chamber. With this 264 265 in mind, the experiments carried out without introducing NH₃ gas were 266 considered "NH₃-poor" experiments in this study, while experiments with the introduction of NH₃ gas were considered "NH₃-rich" experiments, in 267 which the concentrations of NH₃ were more than twice the SO₂ 268 269 concentrations and the oxidation products of SO₂ and NO_x were fully neutralized by NH₃. 270 271 To further quantify the effect of SO₂ on secondary aerosol formation, 272 different concentrations of SO₂ were introduced under NH₃-poor and NH₃rich conditions. The details of the experimental conditions are shown in 273 Table 2. In these experiments, the concentrations of toluene were reduced 274 275 compared to the experiments in Table 1, and monodisperse Al₂O₃ seed 276 particles with mode diameter about 100 nm were introduced into the chamber. As shown in Fig. 4, similar to the seed-free experiments, the 277 278 presence of SO₂ and NH₃ clearly increased secondary aerosol formation in 279 toluene/NO_x photooxidation in the presence of Al₂O₃ seed aerosols. In the 280 experiments carried out in the presence of Al₂O₃ seed aerosols, the 281 decrease of NH₄NO₃ was not obvious in the experiment carried out in the 282 absence of SO₂ under NH₃-rich conditions, indicating that generation of NH₄NO₃ was highly dependent on the surface area concentration of the 283 284 particles, which decreased the partitioning of NH₄NO₃ back to the gas Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 © Author(s) 2016. CC-BY 3.0 License. phase, as discussed above. Under both NH₃-poor and NH₃-rich conditions, all the detected chemical species in the generated aerosol, including sulfate, organic aerosol, nitrate and ammonium, increased linearly with increasing SO₂ concentrations, as shown in Fig. 5. The increase was more significant in a NH₃-rich environment than that under NH₃-poor conditions, indicating a synergistic effect of SO₂ and NH₃ on aerosol generation. Among the four chemical species, nitrate generation increased most significantly with respect to SO₂ concentration under NH₃-rich conditions, followed by ammonium and organic aerosol, while sulfate was the least sensitive species. Under NH₃-poor conditions, the sensitivity of these species followed a different sequence, in which sulfate > nitrate > organic aerosol > ammonium. A better correlation was found between secondary aerosol formation and particle surface area than that with particle volume, with details introduced in Fig. S1 in the supporting information, indicating an enhancement effect in the heterogeneous process rather than in bulk reactions. The different sequences under NH₃-rich and NH₃-poor conditions indicated that the presence of SO₂ and NH₃ not only contributed aerosol surface for partitioning, but also enhanced the heterogeneous process for secondary aerosol formation. 305306 304 Table 2 Experimental conditions of the toluene/NO_x photooxidation in the presence of different concentrations of SO₂ and Al₂O₃ seed particles under NH₃-poor and NH₃- 308 rich conditions Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. | | Toluene ₀ | NO ₀ | NO _x -NO | SO ₂ | Al ₂ O ₃ | NH ₃ * | RH | T | |-----------------------|----------------------|-----------------|---------------------|-----------------|--------------------------------|-------------------|----|-----| | | ppb | ppb | ppb | ppb p | particle/cm³ | ppb | % | K | | NH ₃ -poor | 188 | 147 | 60 | 0 | 2400 | 0 | 50 | 303 | | | 200 | 126 | 51 | 52 | 3100 | 0 | 50 | 303 | | | 188 | 130 | 58 | 105 | 2100 | 0 | 50 | 303 | | NH ₃ -rich | 197 | 142 | 46 | 0 | 3300 | 105 | 50 | 303 | | | 220 | 147 | 50 | 26 | 3300 | 105 | 50 | 303 | | | 207 | 145 | 49 | 52 | 3200 | 105 | 50 | 303 | Calculated according to the introduced amount of NH₃ and the volume of the reactor. 310 309 311312 Fig. 4 Secondary aerosol formation as a function of time with different 313 concentrations of SO₂ in the photooxidation of toluene/NO_x under NH₃-poor (a) 314 and NH₃-rich (b) conditions. Experimental details are listed in Table 1. Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. Fig. 5 Formation of nitrate (blue), organic aerosol (green), sulfate (red), and ammonium salt (orange) as functions of SO_2 concentration in the photooxidation of toluene/ NO_x under NH_3 -rich (circles) or NH_3 -poor (triangles) conditions. The k values are the slopes of the fitted lines for each species. Experimental details are listed in Table 1. Another synergetic effect we found in secondary inorganic aerosol formation was that sulfate formation was enhanced by the presence of NH₃. In both seed-free experiments and experiments in the presence of Al₂O₃ seed aerosols, the sulfate mass concentration was more than tripled under NH₃-rich conditions compared to an NH₃-poor environment. This is consistent with previous studies on the reactions of SO₂, NO₂ and NH₃ in smog chambers (Behera and Sharma, 2011) and the heterogeneous reaction between NH₃ and SO₂ on particle surfaces (Yang et al., 2016; Tursic et al., Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 344 345 346 347 348 349 350 351 352 © Author(s) 2016. CC-BY 3.0 License. 330 2004). According to the consumption of toluene, OH concentrations in the 331 photooxidation experiments were estimated to range from 1.6×10^6 332 molecules/cm³ to 2.7 ×10⁶ molecules/cm³. The reaction between these OH 333 radicals and SO₂ contributed 35%-50% of the total SO₂ degradation in 334 NH₃-poor experiments, while this ratio was reduced to 25%-30% in NH₃-335 rich experiments. This indicated that the heterogeneous process was an 336 important pathway for inorganic aerosol formation in the photooxidation system, and the heterogeneous process was enhanced by the presence of 337 338 NH₃. This result is consistent with the finding that failure to include the heterogeneous process in the model caused an underestimation of SO₂ 339 340 decay in the chamber (Santiago et al., 2012). According to previous studies, 341 NH₃ might provide surface Lewis basicity and liquid surface layers for SO₂ absorption and subsequent oxidation, and therefore, enhance sulfate 342 343 formation (Yang et al., 2016; Tursic et al., 2004). #### Secondary organic aerosol formation The presence of NH_3 and SO_2 caused significant formation of secondary inorganic aerosol, and meanwhile, enhanced SOA formation. In previous studies, Kleindienst et al. (2006) found that the presence of SO_2 did not disturb the dynamic reaction system of α -pinene or isoprene in the presence of NO_x . In the present study, no obvious difference was found in the OH concentration in experiments with different concentrations of SO_2 and NH_3 . Therefore, it could be also assumed that the presence of SO_2 and NH_3 in this study did not significantly impact the gas phase oxidation of Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 © Author(s) 2016. CC-BY 3.0 License. hydrocarbons and mainly played a role in the aerosol phase. The presence of NH₃ markedly increased aerosol formation in the photooxidation of toluene/NO_x. In the seed-free toluene/ NO_x photooxidation experiments, the presence of NH₃ caused similar additional amounts of organic aerosol mass and resulted in increases of 116% and 36% in the absence or presence of SO₂, respectively. In the experiments carried out in the presence of Al₂O₃ seed aerosols, the increase caused by NH₃ was more significant, with the organic aerosol quantity increasing by a factor of four to five. NH₃ may react with the ring opening oxycarboxylic acids from toluene (Jang and Kamens, 2001), resulting in products with lower volatility. The presence of NH₃ might also change the surface properties of the aerosol and enhance heterogeneous oxidation of organic products. As mentioned earlier in this study, there was NH₃ present in the background air in the chamber, so the effects of NH₃ on secondary aerosol formation might be underestimated in this study. Detecting the concentration of NH₃ gas as a function of time and quantifying the effects of NH₃ on secondary aerosol are meaningful, and are expected to be studied in the future. The enhancing effect of NH₃ on secondary aerosol formation in toluene photooxidation was further attributed to its influence in heterogeneous reactions. In the presence of Al₂O₃ seed particles, no obvious new particle formation was detected in experiments without SO₂, as shown in Fig. 6(a) and Fig. 6(c). The presence of NH₃ caused a more noticeable particle growth of the Al₂O₃ seed particles. The increase mainly took place after 0.5 hours of irradiation, and lasted for about an hour, with an average Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-486, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. diameter growth of about 12 nm. In the two experiments carried out in the presence of 52 ppb SO₂ in Fig. 7(b) and Fig. 7(d), significant but similar
new particle formation occurred. The maximum particle number concentrations detected by the SMPS were about 33000 particle/cm³ and 34000 particle/cm³ under NH₃-poor and NH₃-rich conditions, respectively. However, the growth of the seed aerosol in these two experiments was quite different. Under an NH₃-poor condition, the mode diameter of the seed aerosols grew from 100 nm to about 130 nm, while under an NH-rich condition it grew to about 220 nm. These results indicated that elevated NH₃ concentrations mainly affected secondary aerosol formation in the heterogeneous process. Fig. 6 Size distributions of the suspended particles as a function of time during the reaction in photooxidation of toluene/NO_x in the presence of Al₂O₃ seed particles. Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 391 © Author(s) 2016. CC-BY 3.0 License. 392 The chemical properties of the generated SOA under different 393 394 conditions of NH₃ and SO₂ were compared by applying PMF analysis to 395 the AMS data. Two factors were identified from the analysis, with average 396 elemental composition of $CH_{0.82}O_{0.75}N_{0.051}S_{0.0014}$ for Factor 1 and 397 CH_{1.05}O_{0.55}N_{0.039}S_{0.0017} for Factor 2. The difference mass spectra between 398 the two factors are shown in Fig. 7. The abundance of C_xH_y fragments was 399 higher in Factor 2 than Factor 1, while oxygen and nitrogen content in 400 Factor 1 were higher than Factor 2. Meanwhile, as indicated in the red box 401 in Fig. 7, fragments with high m/z were more abundant in Factor 2. Thus 402 we assigned Factor 1 to the highly oxidized organic component and some nitrogenous organic compounds, while Factor 2 was assigned to less-403 404 oxidized organic aerosol and some oligomers. Experimental details are listed in Table 1. Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 0.10 C4H5 0.08 C3H5_{C2H3O} 0.06 √ C5H9 0.04 Fraction of Signal СНЗ 0.02 0.00 C3H2N CH3SO -0.02 H2O CHN CHO -0.04 Сзни -0.06 co co2 -0.08 $\times 10$ -0.10 80 100 20 40 60 120 140 160 m/z 405 406 407 409 410 411 412 413 414 415 416 417 418 Fig. 7 The difference mass spectra (Factor 2 – Factor 1) between the two factors of the generated organic aerosol identified by applying PMF analysis to the AMS 408 data These two factors had different temporal variations during the reaction. As indicated in Fig. 8, Factor 2 always increased at the beginning of the reaction but decreased after reaching a peak with 1 or 2 hours of irradiation. Factor 1 was generated later than Factor 2, while it continuously increased during the reaction. Comparing experiments with different concentrations of SO₂, the production of Factor 2 increased with increasing SO₂ under NH₃-poor conditions, while Factor 1 increased with increasing SO₂ under an NH₃-rich environment. Similar results can also be found in Fig. 9. The higher production of Factor 2 with higher SO₂ under an NH₃-poor environment could be probably attributed to the well-known acid-catalysis Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 419 effects of the oxidation product of SO₂, i.e. sulfuric acid, on heterogeneous 420 aldol condensation (Offenberg et al., 2009; Jang et al., 2002; Gao et al., 421 2004). Under NH₃-rich conditions, however, Factor 1, which has higher 422 contents of oxygen and nitrogen than Factor 2, dominated in the SOA 423 formation. Meanwhile, the production of Factor 2 increased significantly 424 with increasing SO₂ concentration in NH₃-rich conditions. This indicated 425 that the formation of highly oxidized organic compounds and nitrogenous 426 organic compounds was increased with higher concentrations of SO₂ under 427 NH₃-rich conditions. By inference and from the results of AMS measurements, aerosol water increased as the initial concentration of SO₂ 428 429 increased, since more inorganic aerosol was generated. Liggio and Li 430 (2013) suggest that dissolution of primary polar gases into a partially 431 aqueous aerosol contributed to the increase of organic mass and oxygen 432 content on neutral and near-neutral seed aerosols, which would also take 433 place in the NH₃-rich experiments and contribute to the generation of 434 Factor 1. 435 Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 436 437 438 439 440 441 442 443 444 445 446 447 448 449 © Author(s) 2016. CC-BY 3.0 License. Fig. 8 Temporal variations of Factor 1 and Factor 2 in the presence of different concentrations of SO₂ under NH₃-poor and NH₃-rich conditions. Nitrogen-containing organics (NOC) are a potentially important aspect of SOA formation, and may have contributed to the increase of Factor 1 in this study. NOC might contain organonitrates, formed through reactions between organic peroxy radicals (RO₂) and NO (Arey et al., 2001), organic ammonium salts. generated in acid-base reactions ammonia/ammonium and organic acid species (Liu et al., 2012b), and species with carbon covalently bonded to nitrogen, generated in reactions of ammonia/ammonium with carbonyl functional group organics (Wang et al., 2010). Although we were not able to measure NOC, some indirect estimation methods suggested by Farmer et al. (2010) could be applied. The details for estimation of the concentrations of organonitrates and NOC Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. with reduced N are given in the supporting information. Despite the uncertainty, there is an obvious increasing trend of organonitrates and NOC with reduced N with increasing SO₂ concentration under NH₃-rich conditions, as shown in Fig. 9. The increase ratio of NOC is higher than that of the organic aerosol or Factor 1 as SO₂ concentration increases. The estimated NOC contributed most of the increase in Factor 1 in NH₃-rich conditions. These results provide some evidence that the formation of organonitrates and NOC with reduced N (organic ammonium salts, imines, imidazole, and so on) played an important role in the increasing trend of SOA with SO₂ in a NH₃-rich environment. It was speculated that the higher surface acidity of aerosol formed in the presence of a high concentration of SO₂ favors NOC formation through NH₃ uptake by SOA, as observed in a recent work (Liu et al., 2015b). Fig. 9 The estimated concentrations of NOC (ON+NOC with reduced N) and the two factors (identified by PMF analysis) in SOA as a function of SO_2 concentration in photooxidation of toluene/NO_x under (a) Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 © Author(s) 2016. CC-BY 3.0 License. NH₃-poor and (b) NH₃-rich conditions ### **Conclusions** In the photooxidation system of toluene/NO_x, the presence of SO₂ and/or NH₃ increased secondary aerosol formation markedly, regardless of whether Al₂O₃ seed aerosol was present or not. Some synergetic effects in the heterogeneous process were observed in secondary inorganic aerosol formation in addition to the generation of ammonium and sulfate from NH₃ and SO₂. Specifically, the generation of NH₄NO₃ was found to be highly dependent on the surface area concentration of suspended particles, and was enhanced by increased SO₂ concentration. Meanwhile, sulfate formation was also increased in the presence of NH₃. The absorbed NH₃ might provide liquid surface layers for the absorption and subsequent reaction for SO₂ and organic products, and therefore, enhance sulfate and SOA formation. NH₃ mainly influenced secondary aerosol formation in the heterogeneous process, resulting in significant growth of seed aerosols, but had little influence on new particle generation. In the experiments carried out in the presence of Al₂O₃ seed aerosols, sulfate, organic aerosol, nitrate and ammonium were all found to increase linearly with increasing SO₂ concentrations in toluene/NO_x photooxidation. The increase of these four species was more obvious under NH₃-rich conditions, and the order of their sensitivity was different from that under NH₃-poor conditions. A better correlation between secondary aerosol formation and particle surface area than that with particle volume indicated an enhancement effect in the Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. 490 heterogeneous process rather than in bulk reactions. 491 Two factors were identified in the PMF analysis of the AMS data. One 492 factor assigned to less-oxidized organic aerosol and some oligomers 493 increased with increasing SO₂ under NH₃-poor conditions, mainly due to 494 the well-known acid catalytic effects of the acid products on SOA 495 formation in the heterogeneous process. The other factor, assigned to the 496 highly oxidized organic component and some nitrogenous organic 497 compounds, increased with increasing SO₂ under an NH₃-rich environment, 498 with NOC (organonitrates and NOC with reduced N) contributing most of 499 the increase. 500 This study indicated that the synergistic effects between inorganic 501 pollutants could substantially enhance secondary inorganic aerosol 502 formation. Meanwhile, the presence of inorganic gas pollutants, i.e. SO₂ 503 and NH₃, promoted SOA formation markedly. Synergistic formation of 504 secondary inorganic and organic aerosol might increase the secondary 505 aerosol load in the atmosphere. These synergistic effects were related to 506 the heterogeneous process on the aerosol surface, and need to be quantified # Acknowledgments and considered in air quality models. 507 508 This work was supported by the National Natural Science Foundation of China (21407158), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDB05010300, XDB05040100, XDB05010102), and the special fund
of the State Key Joint Laboratory of Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. - 513 Environment Simulation and Pollution Control (14Z04ESPCR). This work - 514 was also financially and technically supported by Toyota Motor - 515 Corporation and Toyota Central Research and Development Laboratories - 516 Inc. #### 517 References - Amarnath, V., Anthony, D. C., Amarnath, K., Valentine, W. M., Wetterau, L. A., and - 519 Graham, D. G.: Intermediates in the Paal-Knorr Synthesis of Pyrroles, J. Org. Chem., - 520 56, 6924-6931, DOI 10.1021/jo00024a040, 1991. - 521 Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl nitrate, - 522 hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NOx-air - 523 photooxidations of C-5-C-8 n-alkanes, J. Phys. Chem. A, 105, 1020-1027, DOI - **524** 10.1021/jp003292z, 2001. - 525 Bai, Y., Thompson, G. E., and Martinez-Ramirez, S.: Effects of NO₂ on oxidation - mechanisms of atmospheric pollutant SO2 over Baumberger sandstone, Building and - 527 Environment, 41, 486-491, DOI 10.1016/j.buildenv.2005.02.007, 2006. - Behera, S. N., and Sharma, M.: Degradation of SO₂, NO₂ and NH₃ leading to formation - 529 of secondary inorganic aerosols: An environmental chamber study, Atmos. Environ., - 530 45, 4015-4024, DOI 10.1016/j.atmosenv.2011.04.056, 2011. - 531 Chu, B., Hao, J., Takekawa, H., Li, J., Wang, K., and Jiang, J.: The remarkable effect - of FeSO₄ seed aerosols on secondary organic aerosol formation from photooxidation of - 533 α -pinene/NO_x and toluene/NO_x, Atmos. Environ., 55, 26-34, DOI - 534 10.1016/j.atmosenv.2012.03.006, 2012. - Chu, B., Liu, Y., Li, J., Takekawa, H., Liggio, J., Li, S.-M., Jiang, J., Hao, J., and He, - 536 H.: Decreasing effect and mechanism of FeSO4 seed particles on secondary organic - 537 aerosol in α-pinene photooxidation, Environ. Pollut., 193, 88-93, DOI - 538 10.1016/j.envpol.2014.06.018, 2014. - Dan, M., Zhuang, G., Li, X., Tao, H., and Zhuang, Y.: The characteristics of - 540 carbonaceous species and their sources in PM2.5 in Beijing, Atmos. Environ., 38, 3443- - 541 3452, DOI <u>10.1016/j.atmosenv.2004.02.052</u>, 2004. - Duan, F., He, K., Ma, Y., Jia, Y., Yang, F., Lei, Y., Tanaka, S., and Okuta, T.: - Characteristics of carbonaceous aerosols in Beijing, China, Chemosphere, 60, 355-364, - 544 2005. Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 - Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, - 546 W., and Claeys, M.: Formation of 2-methyl tetrols and 2-methylglyceric acid in - 547 secondary organic aerosol from laboratory irradiated isoprene/NO_x/SO₂/air mixtures - and their detection in ambient PM_{2.5} samples collected in the eastern United States, - 549 Atmos. Environ., 39, 5281-5289, DOI 10.1016/j.atmosenv.2005.05.031, 2005. - Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, - P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates - and organosulfates and implications for atmospheric chemistry, Proc. Natl. Acad. Sci. - 553 USA, 107, 6670-6675, DOI 10.1073/pnas.0912340107, 2010. - Fu, X., Wang, S. X., Ran, L. M., Pleim, J. E., Cooter, E., Bash, J. O., Benson, V., and - Hao, J. M.: Estimating NH₃ emissions from agricultural fertilizer application in China - using the bi-directional CMAQ model coupled to an agro-ecosystem model, Atmos. - 557 Chem. Phys., 15, 6637-6649, DOI 10.5194/acp-15-6637-2015, 2015. - 558 Gao, S., Ng, N. L., Keywood, M., Varutbangkul, V., Bahreini, R., Nenes, A., He, J. W., - Yoo, K. Y., Beauchamp, J. L., Hodyss, R. P., Flagan, R. C., and Seinfeld, J. H.: Particle - 560 phase acidity and oligomer formation in secondary organic aerosol, Environ. Sci. & - 561 Technol., 38, 6582-6589, DOI 10.1021/es049125k, 2004. - 562 He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, - 563 J.: Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution - days, Sci. Rep., 4, 04172, DOI 10.1038/srep04172, 2014. - Jang, M. S., and Kamens, R. M.: Characterization of secondary aerosol from the - 566 photooxidation of toluene in the presence of NOx and 1-propene, Environ. Sci. & - 567 Technol., 35, 3626-3639, DOI 10.1021/es010676+, 2001. - Jang, M. S., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric - aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814-817, - **570** 2002. - Jaoui, M., Edney, E. O., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Surratt, - 572 J. D., and Seinfeld, J. H.: Formation of secondary organic aerosol from irradiated alpha- - pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide, J. Geophys. - 574 Res.- Atmos., 113, D09303, DOI 10.1029/2007jd009426, 2008. - Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.: - 576 Secondary organic carbon and aerosol yields from the irradiations of isoprene and - alpha-pinene in the presence of NOx and SO2, Environ. Sci. & Technol., 40, 3807-3812, - 578 DOI 10.1021/es052446r, 2006. - 579 Li, W. J., Shao, L. Y., Shi, Z. B., Chen, J. M., Yang, L. X., Yuan, Q., Yan, C., Zhang, X. - 580 Y., Wang, Y. Q., Sun, J. Y., Zhang, Y. M., Shen, X. J., Wang, Z. F., and Wang, W. X.: Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 - 581 Mixing state and hygroscopicity of dust and haze particles before leaving Asian - 582 continent, J. Geophys. Res.- Atmos., 119, 1044-1059, DOI 10.1002/2013jd021003, - 583 2014. - 584 Liggio, J., and Li, S. M.: Reactive uptake of pinonaldehyde on acidic aerosols, J. - 585 Geophys. Res.- Atmos., 111, DOI 10.1029/2005jd006978, 2006. - Liggio, J., Li, S. M., Brook, J. R., and Mihele, C.: Direct polymerization of isoprene - and alpha-pinene on acidic aerosols, Geophysical Research Letters, 34, DOI - 588 10.1029/2006gl028468, 2007. - 589 Liggio, J., and Li, S. M.: Reversible and irreversible processing of biogenic olefins on - 590 acidic aerosols, Atmos. Chem. Phys., 8, 2039-2055, 2008. - Liggio, J., and Li, S. M.: A new source of oxygenated organic aerosol and oligomers, - 592 Atmos. Chem. Phys., 13, 2989-3002, DOI 10.5194/acp-13-2989-2013, 2013. - 593 Lin, Y. H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.: - Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary - organic aerosol formation using conditional sampling approaches, Atmos. Chem. Phys., - 596 13, 8457-8470, DOI 10.5194/acp-13-8457-2013, 2013. - Liu, C., Liu, Y., Ma, Q., and He, H.: Mesoporous transition alumina with uniform pore - structure synthesized by alumisol spray pyrolysis, Chem. Eng. J., 2010. - 599 Liu, C., Ma, Q., Liu, Y., Ma, J., and He, H.: Synergistic reaction between SO₂ and NO₂ - on mineral oxides: a potential formation pathway of sulfate aerosol, Phys. Chem. Chem. - 601 Phys., 14, 1668-1676, DOI 10.1039/c1cp22217a, 2012a. - 602 Liu, X. G., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., - Zhang, Y., Tian, H., and Hu, M.: Formation and evolution mechanism of regional haze: - a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13, 4501-4514, DOI - 605 10.5194/acp-13-4501-2013, 2013. - Liu, X. G., Sun, K., Qu, Y., Hu, M., Sun, Y. L., Zhang, F., and Zhang, Y. H.: Secondary - Formation of Sulfate and Nitrate during a Haze Episode in Megacity Beijing, China, - 608 Aerosol Air Qual. Res., 15, 2246-2257, DOI 10.4209/aaqr.2014.12.0321, 2015a. - 609 Liu, Y., Ma, Q., and He, H.: Heterogeneous Uptake of Amines by Citric Acid and - 610 Humic Acid, Environ. Sci. & Technol., 46, 11112-11118, 10.1021/es302414v, 2012b. - 611 Liu, Y., Liggio, J., Staebler, R., and Li, S. M.: Reactive uptake of ammonia to secondary - organic aerosols: kinetics of organonitrogen formation, Atmos. Chem. Phys., 15, - 613 13569-13584, DOI 10.5194/acp-15-13569-2015, 2015b. - 614 Meng, Z., Xie, Y., Jia, S., Zhang, R., Lin, W., Xu, X., and Yang, W.: Characteristics of - 615 Atmospheric Ammonia at Gucheng, a Rural Site on North China Plain in Summer of - 616 2013, J. Appl. Meteor. Sci., 26, 141-150, 2015. Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 - 617 Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., - 618 Alfarra, M. R., Prevot, A. S. H., Fletcher, C., Good, N., McFiggans, G., Jonsson, A. M., - 619 Hallquist, M., Baltensperger, U., and Ristovski, Z. D.: Analysis of the hygroscopic and - volatile properties of ammonium sulphate seeded and unseeded SOA particles, Atmos. - 621 Chem. Phys., 9, 721-732, 2009. - Na, K., Song, C., and Cocker, D. R.: Formation of secondary organic aerosol from the - reaction of styrene with ozone in the presence and absence of ammonia and water, - 624 Atmos. Environ., 40, 1889-1900, DOI 10.1016/j.atmosenv.2005.10.063, 2006. - Na, K., Song, C., Switzer, C., and Cocker, D. R.: Effect of ammonia on secondary - organic aerosol formation from alpha-Pinene ozonolysis in dry and humid conditions, - 627 Environ. Sci. & Technol., 41, 6096-6102, DOI 10.1021/es061956y, 2007. - 628 Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, - T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol - 630 Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and - mass concentrations of ambient aerosol, Aerosol Sci. Technol., 45, 770-784, DOI - **632** 10.1080/02786826.2011.560211, 2011. - 633 Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., and Jaoui, M.: - 634 Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from - 635 Biogenic Precursor Hydrocarbons, Environ. Sci. & Technol., 43, 7742-7747, DOI - 636 10.1021/es901538e, 2009. - Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four
major - 638 cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. - 639 Phys., 9, 1711-1722, 2009. - Santiago, M., Garcia Vivanco, M., and Stein, A. F.: SO₂ effect on secondary organic - aerosol from a mixture of anthropogenic VOCs: experimental and modelled results, - International Journal of Environment and Pollution, 50, 224-233, 2012. - 643 Schmitt-Kopplin, P., Gelencser, A., Dabek-Zlotorzynska, E., Kiss, G., Hertkorn, N., - Harir, M., Hong, Y., and Gebefuegi, I.: Analysis of the Unresolved Organic Fraction in - 645 Atmospheric Aerosols with Ultrahigh-Resolution Mass Spectrometry and Nuclear - 646 Magnetic Resonance Spectroscopy: Organosulfates As Photochemical Smog - 647 Constituents, Anal. Chem., 82, 8017-8026, DOI 10.1021/ac101444r, 2010. - Takekawa, H., Minoura, H., and Yamazaki, S.: Temperature dependence of secondary - organic aerosol formation by photo-oxidation of hydrocarbons, Atmos. Environ., 37, - 650 3413-3424, DOI 10.1016/s1352-2310(03)00359-5, 2003. - Tursic, J., and Grgic, I.: Influence of NO₂ on S(IV) oxidation in aqueous suspensions - of aerosol particles from two different origins, Atmos. Environ., 35, 3897-3904, DOI Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 - 653 10.1016/s1352-2310(01)00142-x, 2001. - Tursic, J., Berner, A., Podkrajsek, B., and Grgic, I.: Influence of ammonia on sulfate - 655 formation under haze conditions, Atmos. Environ., 38, 2789-2795, DOI - 656 10.1016/j.atmosenv.2004.02.036, 2004. - Updyke, K. M., Nguyen, T. B., and Nizkorodov, S. A.: Formation of brown carbon via - 658 reactions of ammonia with secondary organic aerosols from biogenic and - anthropogenic precursors, Atmos. Environ., 63, 22-31, DOI - 660 10.1016/j.atmosenv.2012.09.012, 2012. - Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., Wang, W., Yang, X., Sui, X., - Yao, L., and Zhang, Q.: HONO and its potential source particulate nitrite at an urban - site in North China during the cold season, Sci. Total Environ., 538, 93-101, DOI - 664 <u>10.1016/j.scitotenv.2015.08.032</u>, 2015. - Wang, X. F., Gao, S., Yang, X., Chen, H., Chen, J. M., Zhuang, G. S., Surratt, J. D., - 666 Chan, M. N., and Seinfeld, J. H.: Evidence for High Molecular Weight Nitrogen- - 667 Containing Organic Salts in Urban Aerosols, Environ. Sci. & Technol., 44, 4441-4446, - 668 DOI 10.1021/es1001117, 2010. - 669 Wang, Z., Wang, T., Guo, J., Gao, R., Xue, L. K., Zhang, J. M., Zhou, Y., Zhou, X. H., - 670 Zhang, Q. Z., and Wang, W. X.: Formation of secondary organic carbon and cloud - impact on carbonaceous aerosols at Mount Tai, North China, Atmos. Environ., 46, 516- - 672 527, DOI 10.1016/j.atmosenv.2011.08.019, 2012. - 673 Wen, L. A., Chen, J. M., Yang, L. X., Wang, X. F., Xu, C. H., Sui, X. A., Yao, L., Zhu, - Y. H., Zhang, J. M., Zhu, T., and Wang, W. X.: Enhanced formation of fine particulate - 675 nitrate at a rural site on the North China Plain in summer: The important roles of - 676 ammonia and ozone, Atmos. Environ., 101, 294-302, DOI - 677 10.1016/j.atmosenv.2014.11.037, 2015. - 678 Wu, S., Lu, Z. F., Hao, J. M., Zhao, Z., Li, J. H., Hideto, T., Hiroaki, M., and Akio, Y.: - 679 Construction and characterization of an atmospheric simulation smog chamber, - 680 Advances in Atmospheric Sciences, 24, 250-258, DOI 10.1007/s00376-007-0250-3, - 681 2007. - 682 Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., and Zhao, Q.: - 683 Characteristics of PM_{2.5} speciation in representative megacities and across China, - 684 Atmos. Chem. Phys., 11, 5207-5219, DOI 10.5194/acp-11-5207-2011, 2011. - Yang, W., He, H., Ma, O., Ma, J., Liu, Y., Liu, P., and Mu, Y.: Synergistic formation of - sulfate and ammonium resulting from reaction between SO₂ and NH₃ on typical mineral - dust, Phys. Chem. Chem. Phys., 18, 956-964, DOI 10.1039/c5cp06144j, 2016. - 688 Ye, X. N., Ma, Z., Zhang, J. C., Du, H. H., Chen, J. M., Chen, H., Yang, X., Gao, W., Manuscript under review for journal Atmos. Chem. Phys. Published: 14 June 2016 © Author(s) 2016. CC-BY 3.0 License. - and Geng, F. H.: Important role of ammonia on haze formation in Shanghai, Environ. - 690 Res. Lett., 6, Artn 024019, DOI 10.1088/1748-9326/6/2/024019, 2011. - 691 Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and Liu, - 692 H. Y.: Characteristics of concentrations and chemical compositions for PM_{2.5} in the - region of Beijing, Tianjin, and Hebei, China, Atmos. Chem. Phys., 13, 4631-4644, DOI - 694 10.5194/acp-13-4631-2013, 2013. - 695 Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, - B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of - VOCs, NO_x and O₃ at a suburban site in Guangzhou, China, Atmos. Chem. Phys., 15, - 698 6625-6636, DOI 10.5194/acp-15-6625-2015, 2015. 699